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I. INTRODUCTION(1,2)

The study of point defects in semiconductors has a long and honorable history (see

Table I). In particular, the detailed understanding of shallow defects in common

semiconductors traces back to the classic work of Kohn and Luttinger. However, the

study of defects in narrow gap semiconductors represents a much less clear story.

Here, both shallow defects (caused by long range potentials) and deep defects (from

short range potentials) are far from being completely understood.

The study of narrow gap semiconductors (see Table II) is important to NASA

because typical ones such as Mercury Cadmium Telluride and Mercury Zinc

Telluride are difficult to grow uniformly under the stress of gravity induced

convection. Also, the narrow gap semiconductors are useful for infrared detection

which in turn is useful for remote sensing and a variety of military purposes.

One aspect of studying crystal perfection is to study the natural and artificial defects

which appear in these materials. In our study we calculate the properties of

numerous examples of deep defects and discuss some problems associated with the

study of shallow defects (see Table III). All defects we study are point defects. Until

one can identify and characterize defects, it is impossible to make clear statements

about crystal perfection.

A full characterization of crystal perfection involves not only a theoretical study of

all common defects but also experimental verification of the models. The simplest

model of shallow defects assumes they are fully ionized. There is not a lot one can

do with such a model. However, refinements tend to get one into many

complications, as we discuss in the appendix. Donor defects can perhaps be best

studied by photoluminescence experiments. It is also of interest that the scanning

tunneling microscope, which can be used to measure the local density of states, can

also be used to study deep defect energy levels.

In this study, all results are calculational and our focus is on the chemical trends of

deep levels in narrow gap semiconductors (see Table IV). We study substitutional

(including antisite), interstitial and ideal vacancy defects. For substitutional and

interstitial impurities, the effects of relaxation are included. For materials like

Hgl_xCdxTe, we study how the deep levels vary with x, of particular interest is what

substitutional and interstitial atoms yield energy levels in the gap i.e. actually

produce deep ionized levels (see Table IV). Also, since the main technique utilized

is Green's functions, we include some summary of that method.



II. DEEP LEVELS OF POINT DEFECTS IN SEMICONDUCTORS

A. Green's Function Method (3"6)

Let us suppose that an atom of the perfect crystal is replaced by a defect. If the

Hamiltonian of the perfect crystal is H o and if the change in potential produced by

the defect is V, then Schrodinger's equation becomes

(H o + V)ILP> = EI _P>. (1)

The host crystal's Green's function is defined as

G°{E} : (E- Ho) "1 . (2)

Combining these two equations, we have

I - G ° (E) V) I_P> = 0. (3)

The defect energy levels E in the band gap of a semiconductor are thus given by non-

trivial solutions of the determinantal equation:

Det (I- G°(E) V) : 0. (4)

For a point defect in a tetrahedral site of a zinc blende material, the point group is

T d. Such a defect can have both non-degenerate A 1 (s - like) state or triply

degenerate T2 (p - like) states. Assuming these states, Eqn (4) can be factored as

det[I- G°(E) V] =

3

II
i=o

det[Ii-G°Vt--0

for i = 0 corresponding to A 1 states and i = 1, 2, 3 to T2 states.

For A 1 states only

 et[I 

(5)

(6)

2



and for the T 2 states

Odet[I,-G,VpJ--0,
(7)

o and o
for suitably defined G s , V s Gp, V p.

Using the equations Us= 14_a and Up= 14p a (see Appendix B4), the deep levels in

the band gap can be determined as a function of U s and Up, which is what we mean

(sby impurity potential in Figs. 3 - 6. Here Us = _s E_np- Ehos and

Up= _p(E p- EPost) ,where Elm p and Ehost are the ground state orbital energies of

defect and host atom, respectively. The relationship between Us, Up and V is

explained in the appendix. Since the Green's function G°(E) is a function of energy

E, we can calculate G°(E) for E in the band gap. Thus we can obtain a plot of U s vs E

or E vs U s (and similarly for Up). For each substitutional defect, the difference in

energies will be determined as will _s, (_p)" Thus we can locate the deep defect

energy levels.
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B. Comments on Ideal Vacancy Model (7)

Vacancies are the most common native defects. The ideal vacancy model is an often

used model for predicting deep vacancy levels. This model is described in detail in

the paper by Das Sarma and Madhukar. The model assumes that a vacancy is

formed by removing an atom from the crystal, but leaving all other atoms in the

same position. Das Sarma and Madhukar proved that this is equivalent to setting

U s and Up equal to infinity. From our previous equations, this is equivalent to

setting

Gsaa(E)=0

GPa (E) = 0

(8)

This, in turn, is equivalent to setting atomic orbital energies equal to oo.

4



C. Band Structure Theory of II-VI Semiconductors(8)

Unlike III-V semiconductors, II-VI semiconductors may have strong spin-orbital

coupling, which must be included in the band structure calculations. Based on Vogl

et al. band structure theory, Kobayashi proposed a theory for II-VI semiconductors

which included spin-orbital coupling. The Hamiltonian for the perfect crystal in

this theory is (assume that the defect is on the anion site)

-. , -. - cHo=Y. liaoo>Ei<iacol +1 icod>Ei<ico i

[ - _ j+_ lia_o>Vij<jc _dl +h.c. +Hso, (9)

where o is the spin, o specifies the unit cell, and d is the nearest-neighbor vector.

Hso is the spin-orbit Hamiltonian, which can be written

_'a La -" _'cLc -" d ]Hso=_ lia(_o>2 ._,<jacol+ licod>2 ._c<jcc I '(10)

where Ka and _'c are the spin-orbit parameters. As usual, the band structures of the

alloys were obtained within the virtual crystal approximation.

However, for most point defects that we are interested in, the spin-orbit interaction

is weak and can be ignored. Then, including the degeneracy due to spin just doubles

the degeneracy of each level. This makes the A 1 states doubly degenerate, and the T 2

states six fold degenerate. For this case, the previous Hjalmarson et al theory is still
valid.
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.

D. Lattice Relaxation and Molecular Dynamics Approach (9-13)

When the off-diagonal elements of the defect potential are equal to zero, the

effects of the lattice relaxation are excluded since only these elements are

related to defect-bond length. To include these effects, we must include the

off-diagonal elements of the defect potential. Using the nearest-neighbor

approximation, the form of the defect potential is

V=_Vi=_iliao>Vi<iaol

+ _i,j [ i a o > 0_ij <jc dl (11)

where i can be s or p, and aij define the off diagonal elements. When all the

symmetries are built in, we find the form of the matrix element V i is

i
U aa_a

aa

Vi= a O

(x

(X

(12)

The determinantal equation then leads to the following:

i i i i i '
1 Gica + Giac 4Gca Gac- Gcc Gaa - 3Gaa Gcc

Ui- i i 4°_i+
Gaa Gaa Giaa

2

40_ i ,

(13)

!

where Gcc is the elements of Green's function matrix coupling two nearest-

neighbor host atoms. This gives an implicit equation for the i - symmetric deep

levels E as a function of U i and a i.

The form of 0_ can be inferred from arguments due to Harrison which imply that the

nearest neighbor matrix elements scale as the inverse bond length squared. We thus
find

6



(14)

where d I is the bond length between the defect and one of the nearest neighbors, and

d H is the bond length of the host crystal, with C i being a proportionality constant.

Since o_i is related to d! it is also directly related to the lattice relaxation. Further the

sign of 0_i determines the direction of lattice relaxation.

If we can determine (z for a particular defect, the deep levels induced by this defect

can then be predicted by the previous equation. In order to determine o_, we need to

calculate d I and d H. For well known semiconductors d H is known. The

determination of d I is more difficult, and we now discuss this.

2. Molecular Dynamics Approach

(a) In order to calculate o_ for a particular defect in a host, the defect bond

length must be specified. A simple model will first be presented, and

then the more general molecular dynamics approach. The simple

model uses the concept of covalent radius. It is assumed that

d I = r I + r H (15)

where r I and r H are the covalent radii of the defect and the nearest-neighbor atoms

respectively. Such radii are tabulated for most atoms of interest in the present study.

The host bond length is given by

a c

dH= rH+ r H.
(16)

For a particular defect in a host, if d I > d H we have outward relaxation. If d I < dH,

we have inward relaxation.

This simple model works very well for most group IV and III-V semiconductors.

However, it is not suitable for II-VI semiconductors because they are not purely
covalent materials, but a mixture of covalent and ionic bonds. For these we must

use a molecular dynamics approach.

(b) For an ideal defect, the four nearest-neighbor host atoms will remain

in their perfect-crystal positions. However, in a more realistic

7



treatment, these atoms experience a net force and the lattice distorts to

a new configuration where that force is zero. The total force on one of

the nearest-neighbor atoms can be divided into repulsive and attractive

parts, which can be represented as

Fx = Frx + Fa (17)

where x is along the defect-host bond direction. The origin of F r is the repulsion

between electrons in overlapping states, and this force can be computed from the

empirical relation

(18)

where A is a constant determined by the condition

F_ (dH) = Fa (di-i)

3V

(19)

which assumes the same functional form for 3x for the host crystal as for the host

crystal with defect. The attractive force F a can be computed by use of the equation

[f F 3V G
Fa =lImTr E G d

_ Ox

(20)

where _F is the Fermi energy, G is the Green's function matrix including the defect

and V is the defect potential (see Eqn. B38).

Using these two equations and beginning with the nearest neighbor host atoms in

their perfect-crystal positions, we can calculate the motion of each of these atoms for

a small time interval, At, using Newton's second law with the standard molecular

dynamics approach. One lets the process continue until the net force approaches

zero. Thus d I is determined.

8



E. Interstitial Defects - Brief Comments (14-15)

Self interstitial impurities and vacancies are the most important native defects in
semiconductors. In II-VI materials, it is believed that a substitutional group - I

acceptor may spontaneously move to an interstitial site.

For a substitutional defect in zinc blende structure semiconductors, the defect has a

tetrahedral symmetry in the materials. That is, there are four nearest-neighbor

atoms and twelve second-nearest-neighbor atoms around the defect. If the distance

between the defect and the nearest neighbor is d, then the distance between the

defect and its second neighbor is 1.64 d. The situation of tetrahedral-site interstitial

impurities is different. In this case, there are four nearest neighbors around an

interstitial impurity with distance d', but only six second neighbors around it with a

slightly greater distance 1.15 d'. Hence, the nearest-neighbor approximation, which

is often used for substitutional defects, is not acceptable for interstitial impurities.

We will calculate results for deep levels introduced by interstitial impurities in

MCT, MZT, and MZS. The theory we will use will take into account the above

complications but will be somewhat similar to what we have done before. We will

give our results in the final report.

9



F. Summary of Results for MCT, MZT and MZS for Substitutional Defect

In Table 4, we summarize the results of several calculations we have done including

both substitutional vacancy and antisite defects. In the final report, we will include

these, as well as results in interstitial defects. Here we just give some typical results.

In Table 5 we give a few typical examples of the calculations including the effects of
lattice relaxation.

In Figure 1 (for MZT), we show several possible cation-site s-like (A1) levels which

may be formed by (for example) Te (Antisite), C, At and I as a function of

composition x. The vacancy level below the valence band edge is considered

because it is possible that lattice relaxation or other effects may raise it into the

bandgap. In Figure 2 (For MZS), we see anion site, p-like (T2) levels due to Cd, Zn

(antisite), Mg and Be as function of composition x.

In Figs. 3, 4, 5 we summarize some results including the effects of lattice relaxation

for anion-site p-like deep levels which we can get for MZT (x = 0.15), MCT (x = 0.22)

and MZS (x -- .08). In each case the top of the valence band is at E = 0.0 and the

bottom of the conduction band is at E = 0.1. In Fig. 3, we see that Zn may have an

impurity level in the band gap for (z = 0 (no relaxation). Similar comments may be

made about Cd in MCT and Be in MZS. In each of these particular cases relaxation

may take the level out of the band gap or deeper in the band gap (see Table 5). In Fig.

6, the ideal vacancy levels are modeled by setting the impurity energy = + oo (or - 120

is nearly the same). We see the vacancy levels appear below the top of the valence

band for this case. For other situations we do find some vacancy levels in the band

gap for MZS. We will provide a detailed summary of our results in the final report.

10



13I. SHALLOW IMPURITY LEVELS IN II-VI MATERIALS

A. General Discussion (16"17)

We give, in the appendix, a fairly complete description of shallow defects in narrow

gap semiconductors which can be modeled by the Kane Model (18). Much of this

materials comes from the book by Bastard (19). The essential fact to note is that band

mixing causes the situation to be much more complication than a hydrogenic model

- except in the crudest approximate. In any case, for shallow impurity levels, we

always assume a long range potential with perhaps a central cell connection if some

refinements are necessary.

The main purpose of including Appendix C is to give one a feel for the complexity

of the problem and to show why, since the binding energy can never be appreciable,
that one often assumes total ionization of the shallow levels.

11



B. Other Complexities( 20, 21)

We have already mentioned that the donor ionization energy may be so small that
it is only sensible to assume its total ionization.

In addition with a large density of states, the donor levels may split into a band

which may merge with the conduction band. The merging of the donor levels with

the conduction band seems to be a common occurrence for Mercury Cadmium

Telluride with x < 0.2. There are other reasons for the merging of the donor levels

with the conduction band. Donor levels can be screened by the electrons in the

conduction band, and this screening can decrease the binding energy (Neumark). In

addition, when the binding energy gets small enough, the donor wavefunctions

may hybridize with the band functions and again we get merging (Lowney).

12



TABLE 1

Types of Point Defects

Substitutional Atoms

Interstitial Atoms (Self or Foreign)

Vacancy

Antisite Defect in Compound Semiconductor

13



TABLE 2

Materials

MCT

MZT

MZS

HgCdTe

HgZnTe

HgZnSe

Hgl_xCdxTe

Hgl_xZnxTe

Hgl_xZnxSe

14



TABLE 3

Brief Properties of Shallow and Deep Levels in II-VI Compounds

Definition

Wave Functions

Energies

Properties

Complications

Examples

Historical Theory

DEEP LEVEL

Originates from
short range potential

Typically mix with
Valance and Conduction
band

Often have ionization

energies comparable to

half of gap energy -
not a Hydrogen like
spectrum - use tight
binding approximation

Act as recombination

centers, compensators,
and facilitators for electron-

hole generation

Hard to identify
appropriate models

Non parabolic bands

Vacancy, substitutional
atom, antisite, interstitial
atom

Slater-Koster

SHALLOW LEVEL

Originates from long range potential

May mix only with adjacent band to
level

Usually have ionization energies much
less than gap energy - have a Hydrogen

like spectrum as modified by dielectric
constant effective mass, or other

complications

These supply carriers and hence control
conductivity

Questions of screening (which may be
site dependent) and merging with band

Non parabolic bands and band mixing

Polar nature of lattice, degeneracy or
near degeneracy of bands can also cause
complications

Hg vacancy, In on metal site plus many
others as predicted by periodic table

Kohn-Luttinger Effective Mass

15



TABLE 4

Summary of Calculations which we Have Done on Deep Levels

No R¢10xation

MZT

cation-site-s-like - Te (antisite), C, At, I

cation-site-p-like F

anion-site-p-like Cd, Hg (antisite), Zn (antisite), Mg

anion-site-s-like there are no deep levels predicted in the band gap

several x= 0.3 levels - both s- and p-like

several x = 0.2 levels - p-like

cation-site-s-like vacancy level is below the valance band edge about 0.4 eV

VS. X

MZS

anion site p-like

cation site p-like
cation sire s-like

anion-site s-like

Cd, Zn (antisite), Mg, Be

Vacancy vs. x

Vacancy

there are no deep levels predicted in the band gap

With Relaxation (when the parameter cz = 0, the use of no relaxation is included).

MZT

anion-site p-like x = 0.15

cation-site s- and p-like x =0.15

anion-site p-like x = 0.3

cation-site s- and p-like x = 0.3

Vacancy s- and p-like x = 0.15

(x = - 0.4, - 0.2, 0.0, 0.2, 0.4

MCT

anion-site p-like x = 0.22

cation-site s- and p-like x = 0.22

MZS

a = - 0.4, - 0.2, 0.0, 0.2, 0.4

anion-site s- and p-like x = 0.08 ((x = - 0.4, - 0.2, 0.0, 0.2, 0.4)

16



TABLE 5

Bond Lengths

parameter o_s O_pand p-like deep levels with or without relaxation

System dH (/l_) dI ('/_) (_s (eV) 0_p (eV) deep levels deep levels

(no relax) (relaxed)

MZT :HgTe 2.74 2.80 0.07 - 0.04 C.B. a C.B.

MZT: ZnTe 2.74 2.58 - 0.22 0.13 0.9 Eg b 0.4 Eg

MCT :CdTe 2.54 2.71 0.20 - 0.11 0.98 Eg C.B.

a. C.B. means conduction band resonance.

b. Eg means the energy band gap.

17
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B. Green's Function (1)

1. Summary of some standard Results (1)

The results we list can be found, together with derivations, in the book by

Economou.

The Green's function can be defined by

1 ]_n nE_<nG (E) - E - H - E n (B1)

Define

-. lim
(r '" E)=G+ ,r, +

s-)0
G r'; E + is)

- (r ;>"E) I G (E) ]where G (r,r, =

One can then show that the local density of states can be derived from

9 (E) = :I: 1__Im [Tr (G ± (E))]

(B2)

(B3)

(B4)

where we have used:

G + (_ r'; E) = lira On (;) (_n(r')
, 0 ÷ ZS _ E + is - E n

=VEn_n(7)(_ n (r-_) _: i_ E 8{E-En)¢n(r)¢n(r')

E - E n n (B5)

Consider an unperturbed system with Hamiltonian H o and a perturbed system with

Hamiltonian H I. Let the corresponding Green's function be G o and G where

G O (z) = (z- Ho)'l

G (z) = (z - H) "1 (B6)
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From this one can derive the Dyson equation

G = G o + G o H l G

And if one defines T matrix as

(B7)

T = H I G Go -1 (B8)

(B10)

to be V for 1 and m being nearest neighbors and O

one can show

G(z) = Go(z ) + G o T G o , (B9)

thus from the T matrix, we can determine the Green's function.

We now apply this to a crystal with an unperturbed tight binding Hamiltonian

given by

Ho=8oY, ll><l +]_[l>V_<m{

where we will restrict V_" m

otherwise.

Note II-*> is the atomic-like orbital, or Wannier function, centered at lattice site _.

We will consider only one band. The Bloch and Wannier functions are related by;

Since

-" 1 -, ik"-_"-"

Ik > =_Y.1 e II >

Hol;> = E (k)]k>, we can show;

(Bll)

E (k) = 8° + 21(n-n) e Vi" (B12)

the typical tight binding result. Knowing the exact energy eigenvalues we can then

evaluate the unperturbed Green's function.
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To show how this is useful we consider a simple model of a substitutional impurity
in a lattice as given by Economou. In Economou's model the substitutional

impurity has as a perturbation

Hi= II'>c<l I
(B13)

From this, one can obtain the T matrix as

£
T=II> <11

¢,-"1-cG o 1,E)
(B14)

where G O(1, 1; E) = < i*l G_E) I i* >

The Green's function is then given by;

--* £ ---
G=G o+G oIl > <1 IG o

1 - e G o (1,1) (B15)

Then the poles of G yield the discrete eigenvalues (Ep) of H via

(B16)

One might also mention that an ideal vacancy is modeled by assuming c _ _ or

Go (i*, i*, Ep)=0
(B17)

which then excludes the side i_ from occupancy.
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2. Analytical Results

The Green function G o (E - H o)'1 has a singularity at E = En_, the eigenvalues of

H o. The singularity may be by-passed by including complex values

But

L 1±

G o(E) =
8--+0 E-Ho+i8

(B18)

L 1 1

_=p_- 2[ i _ 8 (E)e--+o E+i 8

where the principal value is defined by

b

p f (x)

X - X o

L f (x) dx f (x) dx
+

_--+O X-X o X-X o

0+8

Thus

(B19)

(B20)

± 1

G°(E)=P E-H-----_ _ 8(E-H°) (it0

and the first term on the right hand side can be rewritten (formally)

Go_(E) =Pf

8(E'-Ho)

E-E'
dE' :F (i=)8(E-Ho)

which is another form of (B5).

(B21)

(B22)
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Away from the _ we can write

Go_(E) = Go(E) = f <E'-Ho)_:E; dE'
(B23)

Using the identity

_(E'-H°)=Y_lnk>f(E '-Enk)<nk I
nk

(B24)

Ink>8(E'-Enk)<nkl

E_E _
dE !

(B25)

Using I 1 > to denote Wannier state localized at site 1.

<I,CotE),1'>=Zf
<1 Ink>8(E'-Enk)<nk 11'>

E.E '
dE !

(B26)

<1 Ink><nk II'>
<1 IGo(E ) II'>=Y___,nk

E-Enk (B27)

Finally, it is very useful for relaxation calculations to derive an expression for the

force in neighboring ions.

Formally, the total energy can be written as

EF

Eto t=/ Ep(E) dE
-oo

(B28)

where p (E) is the density of states.

The force on one of the nearest-neighbor atoms can be represented as
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0 Eto t 0 IE P (E) dEF x = 3 x = - 3 x (B29)

and x is along the defect-host bond direction. More precisely, this doesn't treat the

core electrons which give repulsion, so this is only for the attractive electrons, F a • A

basic result is (Eq. B4)

p (E)= _ _-Im TrG (B30)

Thus

EF

a 0 I EIIm[TrG+(E)]dEFx= +
OO (B31)

Dyson's equation works for G(z), so it certainly works for G+(E) which is just a limit

of G(z). Thus

G = G o + G o VG (B32)

or

3x = o-_-_- +G°V 3x _3x -0] (B33)

SO

(I-G V 'oG 3Vo --Go-g G (B34)

which means

3 G-(I-G°V}'I3x Go_____ G3V
(B35)

From Dyson's equation it also follows that
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G ={I- GoV}IGo ,

Thus we have

and

(B36)

(B37)

a IImTrflFEG_VxGdE
Fx =_-

(B38)
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3. Determination of G°(E) - Vogl Band Structure Theory (2)

O O

To calculate the defect levels from Eqn. (6), we need to calculate G s , Gp first. In the

Appendix B2, we have shown for E in the band gap as for defect levels (i.e. with E #

Enk ), we have

(B39)

We have also noted that the spectral density operator 8 (E' - H °) can be written as

8(E'-H°)=_ Ink>8(E-En_)<nk I

nk (B40)

Where Enk and I n k > are the eigenvalues and eigenvectors of the host crystal. In

turn, En_ and I n k > can be determined from the model of H o.

The model of H o which has been used is based on the model of Vogl. The

Hamiltonain of the perfect crystal has the form:

H o
= liaR> <iaR I+ licR'> <ic

[- - ]+_ liaR>Vij<jcR+d I+h.c. (B41)

where i = s, Px, Py, Pz or s* labels the orbitals, a and c denote anion (like Te" ") or

cation like (Hg ++, Zn++), and h.c. denotes the Hemition conjugate. The states

l i a R > and li c R' > are localized orbitals centered on the R and the cation at

R + d, respectively, where d is the nearest neighbor distance.

The main points of this model as summarized by Vogl are

(1)
(2)

The chemistry of sp bonding is retained.

The diagonal matrix elements of the model are related to the atomic

33



(3)

(4)
(5)

energies of the chemical constituents. This is really what allows one

to predict chemical trends.

The off-diagonal matrix elements scale as the inverse of the bond

length.

The number of parameters in the model is minimal.

The theory reproduces both valence and conduction bands.
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4. Determination of V - Hjalmarson's Deep Level Theory (3)

From Eqns. (6), (7) in section IIA, we see we need the perfect crystal Green's function

G ° and the defect potential V to determine the energy band. In the representation

with symmetry appropriate to the symmetry of the point defect, V s and Vp are

matrices of a certain size, arising from Bloch diagonizalition. With the five atom,

central atom and nearest neighbors, cluster, V s and Vp are 5 x 5 matrices. If we want

to include the 2 nd neighbor in the calculations, we need to consider a 17 atom cluster

which includes a defect, 4 nearest neighbors, and 12 second neighbors so the

matrices are 17 x 17.

In Hjalmarson's deep level theory, four assumptions, described in detail in

Hjalmarson's dissertation, are given. The assumptions are

(1)

(2)

(3)

Only consider the central cell potential (ignore the Coulomb potential).

Thus this theory can only be used to predict the deep levels.

Use the nearest neighbor approximation so V s and Vp are 5 x 5

matrices.

Assume the off-diagonal elements of V are equal to zero and this

ignore the effects of lattice relaxation.

Therefore, the form of V is diagonal and can be written:

_iVi _ -" _.V= = i lia°>Ui<ia° I (B42)

where the U i are the diagonal elements of V i and the basis states I i a o > are

orthogonalized symmetrized Lowdin orbitals which are linear combinations of sp 3

hybrid orbital. This assumption has been called the ideal defect assumption.

(4) Assume the diagonal elements of the defect potential V i can be

calculated with the equations

=f_ -EU s s hos (B43)

Up = _p(E'_np- EPosl (B44)

where Eim p and Ehost are the atomic orbital energies of defect and host atoms

repsectively, with [3s and _p being proportional constants. Hjalmarson indicates that
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(Eim p - Ehost ) changes by a constant factor on going from are free ions to ions in a

solid, so that this approximation puts in the correct chemical trends. Hjalmarson

and other discuss empirical ways of fitting the _'s.

Because the Vs, Vp are diagonal, it is easy to show that the defect eneriges are
determined by

Us = 1//G_ and Up= 1//Gp
a aa

(B45)

P
Where G_a and Gaa are the diagonal elements of the Green's function matrices

G o, oGp respectively.
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C. Details of Shallow Impurity Levels (19)

Shallow Impurity Levels and the K0ne Model

We start by reviewing the Kane k • p three band model. Kane diagonalized the

Hamiltonian exactly for three bands (conduction, light hole, and split off). We write
the basic Hamiltonian as

p2
H- I- V(r)

2m o
(Cl)

where p is the momentum operator, m o is the electron mass and V(r) is the crystal

potential. Using Bloch's theorem

1 ik'.r

_/;(r) =-_e U_'(r)
(C2)

where f2 is the volume of the crystal, k is the Bloch wave vector and U_'(r) is

periodic between unit cells. The time independent Schrodinger equation can then
be written

;o)-Hko+ - .p+--

where

2mo (k2-k Unk(r)

- (r)= En(k ) Unk
(C3)

2 ._ _l,i2 2
P +V(r)+'li ko.p+ ko

H ko = 2 m----_ m o 2 m------_
(C4)

The band index is n.

The equations for the

terms of a set U n_o

k • p representation are obtained by expanding the UnV in
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Un;(7 ) = En, Knn, Cn,;o (7) (C5)

I ff2o U_,_(r) Undo(r) dv = _n,n
If f_o

over a unit cell f_o then combining the last two equations, multiplying by
I

and integrating over a unit cell, we find:

-k _n'n+ __o(k-ko)'P nn' Knn'En,

= E n (k) Kn n'

(C6)

Unko

(C7)

where

-- 1 ff_o U:koPUn'ko dV"
Pnn'= _oo (C8)

The spin-orbit interaction must also be introduced. We ignore other relativistic

interactions. This amounts to adding in

2C 2
4mo (C9)

where c_ is the Pauli operator.
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Including the spin-orbit term one finds:

_. _2k2 ._ __.._.

_--'n'{[En(°)-En(k)+ 2m ° ]_nn '+ mok'Pnn'

+ <n I x v .pin'>

mo 4mo C2

+-- <n I x v In'>}Knn,=0.
mo 4mo C2

(c10)

Where the last term comes from going from _n_ to Un_ and is very small and

will be neglected from here on out. We have chosen the F point where k o = 0 for

Eqn (10).

The approximation is often used that Uno is restricted to states of F 6 , r 7, and F 8

symmetry - in the usual sense. These states include four bands (the conduction

band, the light hole band, the split off band and the heavy hole band).

The basis functions for the bands, which diagonalize the spin-orbit interaction, will

now be explained. We start with the functions Is>, Ix>, ly>, Iz> which transform

just like atomic s and p functions under the action of the tetrahedral group.

Including spin, this gives 8 functions:

IsT>, Ix'/'>, l y$>, IzT> and Is,l,>, Ix,/,>, l y,l,> and Iz,],>. We then form linear

combinations which diagonalize the spin orbit interaction.

In order to do this, we form linear combinations for which = L + S and its

projections Jz are diagonal. We summarize this in a table below, together with the

band edge energies. This is a problem which is solved by Clebsch-Gordon

coefficients. The U n below are the periodic parts of the Bloch functions. In what

follows we follow Bastard (1988) very closely, but add some details for clarity.
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O m JMj Linear Combination
Energy of

Band Edge (H=0)

2

1 1

IF,r>
1 1

I- -->
2' 2

ilsT>

i I s$>

0

0

3

4(5 1+ ,

6

3 1

IN,N>
3 1

Ig,-N>
3 3

IN,F>

3 3

Jg,-_->

- I z T> + _ I {x + i y),l,>

- I z,l, >- _ I {x-i y) q'>

1

I{x + i y)T>

1

_ I(lx-iy)$>

- _o

- £o

- 130

- I_o

1 1 1 1

i N,__> _ I{x + i y),l,> + _ IzT>

1 1 1 1

IN,r> -_ I{x-iy}T> + _ I z,l,>

-%-A

-Eo-A

4O



We will display the matrix of the Hamiltonian later, but for now we give some

results. The secular equation for the energy is;

_*{_-__'-/_._•P:k:)_2_P:k:--0,
(Cll)

from the three coupled bands. The heavy hole band decouples and comes out

dispersionless. However, coupling of the heavy hole band to higher bands leads to

._12k 2

Ehh - 2mhh
(C12)

The momentum matrix element P and the spin-orbit splitting parameter a are

defined by

P=---<s IP x Ix>
m o

(C13a)

and

h=-3i 4 C2 <xl P)zlz .

(C13b)

Our next job is to work out the matrix elements. We drop the k-dependent spin-
orbit term as well as the relativistic corrections.

h2k 2 h --

Mij ={Ei(°))+_i +_ k°Pij
2m ° J m o

h _ (_)+ <i I x V oP Ij >

mo 4mo C2
(C14)

The results are the following:
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i

2

3

4-

5

7

8

i

0

0

0

0

3

0

0

0

2-_.k.Z o

4-

0

0

0

0

0

:5"

0

0

0

0

0

0

6

0

0

0

0

z2_,lo

0

0

7

0

0

0

0

+._.ttC
_. #1'1,

0

8

0

67

0

0

0

+ -_.E'
2. t,rt ,,

(c_)
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Shallow Defects

We want to describe the behavior of electrons moving in imperfect III-V and II-VI

crystals with defects. We look for solutions of the time independent Schrodinger
equation

(C16)

where H o is the Hamiltonian of the perfect crystal and (_ (r) is the non-periodic

potential arising from the defect. For shallow defects, _ (r) is slowly varying at the
scale of the unit cell.

We first prove some initial results.

I=f. /(_)p(r) dV

Consider the integral

(C17)

where p (r) has the periodicity of the lattice.

p (r + R)= p (r)

and R=_nie i

(c18)

(c19)

with n i ( i = 1, 2, 3 ) being integers and e i the fundamental translation vectors of the

lattice, y is required to fall off quickly enough at large distances for I to converge and

p (r) is periodic. It can be expanded in a Fourier expansion using only the reciprocal

lattice vector R.

p (r) = _ _'p (K) e

where by inversion

(C20)
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1 I¢_ -i_o7p (F.)= _- p (r) e dv

1_.__ ff_ -iK.r
= p(r)e dv,

0
(C21)

where f2 is the volume of the crystal and [2 o is the volume of the unit cell.

An approximate form for the integral below can be derived. This form of integral

occurs later and we need to approximate it.

I = In f (r) p (r) dv

fn iK*r
= _ p (F,) f (r) e dv

K
(C22)

Since the volume of the unit cell can be decomposed into identical stacked unit
cells, we can write

fn fn -" i_'.rf(r)ei_'rdv:_ , f(Ri+r)e g,
Ri

iK.R
where we have used e = 1.

On the scale of a unit cell, we assume ] (r) is slowly varying so

f (Ri + r)= f (R i).

Thus

(C23)

iKf (r)p(r)dv=-ZRif (Ri) e "rdv
i

= _'_o 8K i f (Ri)"
(C24)
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Thus

O

I = Z_'P (K) f2oSK ZRi / (Ri)

= p (o)_)oZRi f (Ri)

=p(o)fa / (hdv

But p (o) = _- p (r) dv, so

we find

 F/ISo,dv}•
We have assumed the Bloch states I n k > are normalized as per

(C25)

6nn' = _" Un k (r) Un. k dv (whole crystal)

lfo- f2 ° Unk G) Un k dv (unit cell)
O

TO solve IHo + q_(r)] _ (r) = E _1/(r)

(C26)

(C27),

we assume 0 _) couples the 1-"6 , F 7, F 8 states among themselves. Again, following
a Kane like theory we look for a solution in the form

v(h 8=__; cl/l(r) U_o(r),

where the fl (r) 's are the envelope functions which vary slowly.

r point Bloch functions for the eight bands.

The wave function _ (r) is normalized so;

(C28)

The U 1 o's are the

1 ik'.r

When qb(r) =0, we have fl=_ e
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fQ _. 21 = I w(r) i dv

"]o" := Zl, mClCm /mfl U o Ulo dv

Combining Eqs (17), and (25) for integrals of periodic and slowly varying functions,
we have

/1 =El, m CICm_- f fldv Um ° UI ° dv

So we find ;

dv

(C29)

And again since we want Y. Icl 12= 1, the envelope function needs to be normalized

to 1.

Thus

I. I/,l_av--1

In summary we have:

(C30)

p2
Ho- +vG)+

2m o 4m2oC2 "

8v(h--z,._ c,/,(h U,o(h

["o

(C31)

(C32)

(C33)

and f l is normalized by Eq (30). We now substitute Eq (32) into (33) and use (31).
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We use

2

P (fiU,o)={P2fz)U, + 2(pfz)(pUl)+ f,(p2U,).
(C34)

Let H o be given by Eq (31), and as usual we will neglect the "k - dependent" part of

the spin orbit interaction. We also set the notation so the spin orbit term is buried
in Ho,

HoUlo=gloUlo

So we get

O= C1{81o - _ /mflUlo Umo dv=1

• . P fldv+ UmoU1ofm2m

'fo(- I(-)+_ UmopU1 "YmP/Idv
mo o •

(c35)

(C36)

Using again Eq (25), we can simplify several integrals. We get

2m o

', /'f f0=]_1=1C1{81-8 _- /m/ldV UmoUlodV

2

f f--fldv UmoUlodv+_- fm*(r)f! U_oUlodV

+ Pm! o l dv } = O,

where

(C37)

Pml m o f2 U o PUlo dv,

(C38)
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and we can use

I * lUmodv = _ _m °
J

Therefore, we write

2

sO=El=l C l [G,o P-----_--fldV_lm

Im f-+ f (_(r) fldV_lm+Pml" fmPfl dr}

We can rewrite this as

8 51 1_1-_+ p'--_+ +Pml- Clfl,
0= dvf (r) Y.l: t m 2m °

where due to periodicity, we can rewrite Eq (38) as

--- 1 U oPU1 dv
Pml- m:_o o •

Non vanishing solutions for f exist if f' is an eigensolution of the problem:

(D+¢)
f2

t

Is

i

w

/2

=£

(C39)

(C40)

(C41)

(C42)
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i

where fi =Ci/i and the matrix D + _) is given on the following page. We have

dropped the free electron term and continue to neglect relativistic corrections and

the 'k dependent' part of the spin orbit term.
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The matrix for D + (_ can be written:

l

2

3

4-

5

6

7

i

0

0

d_

4-

O

O

0

0

0

5

0

0

0

0

0

0

6

0

0

0

0

0

0

7

0

0

0

0

0

8

0

Q

0

0

0
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The periodic part of the Bloch functions going along with f i are

V i

U 1 =i I s$>

U2i I s$>

U3=- IzT>+_ I{x+iy}$>

U4 =-,vF_-I {x-iy}$>- Iz$>

1

U5=_ I{x+iy j $>

1

U6= _ I{x-i y_$>

1 1

V7= _ I{x + i y},l, > +-_-Iz$>

1 1

Us= J3 Ilx-iy}$>+_lz$>
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Eq (42) can be reduced to an effective 2 x 2 system starting with the third row, we get

p {_¢ ¢o + =- PPzfl+_P-f2 + - _)/3 O,

or

I3- (8 °+ 8-4)} PPzfl + 4r_ - f

In a similar fashion, from the rest of the rows, we can derive:

(C43)

f4 (%+1 P8-*) _P-_ 11- PPzf
(C44)

1

i5-(%+ E-4)) [Pp- 11]
(C45)

f6- (Eo+l [P f2]e-_) P +
(C46)

Pz/1 + P P _ f

(C47)

f8=(¢o+ A + E:_41) P+fl+_ pzf
(C48)

If we substitute Eqs (43) - (48) into the two equations we get from the first two rows

of Eq (42), we get our effective 2 x 2 Eq (42). This, in effect, projects the Eq into the F 6
band.
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The resulting effective 2 x 2 equation can be written

where

Hd Hn d

+

Hnd H d

(C49)

2P 2 _ + p2 (_ + _ qb)-lp-Hd=--_-pz{¢ + ¢ o _)-1 pz P+ %

p2

+-_-P-{e+%-0)'lp+ +_-_P_(¢+¢o+a-(_)'lp+

+ p2
-_-pz (¢ + ¢o + A- q))'l pz + q)

(c50)

/ 01-)/f -11](¢+ ¢°+ a - _)-I-[E+ ¢o +A- Pz'Pz ¢+ _o -_]-1-[¢+ ¢o + A-_] p_

(C51)

Hydrogenic Donor Problem

K = static dielectric constant of semiconductor.
(C52)

For almost all r,10 (r)] < < _o

Expand to lowest order in

J

Eo ¢o + A
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We obtain

2

o P__C__+¢(r)
Hd= 2m F6

2P 2 2 p20

H d = H d - _ ¢P
3Co 3(¢ o A) 2p+ 3¢ o

p2 p2

+ --TP+ ¢ (_) P-+ ---_ P-(_ (r)p+

2p 22
+ ----_-pz #? (h pz

Eo 3E o

p2 2p2

+ pz¢(r) pz+ p._ (r) p+

3/ o+d

(C53)

h "e_- P2[ 1 1 ][p_+(r) + (r) p.]
nd =--_ --- ---

[ a° (e°+ A) 2 Pz-Pz

With the zero order term only get Hydrogenic levels

(C54)

* m
ao=0.53_ xK x o

mF 6

Ro=13.6eV x mr6

K2mo
(css)
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